Genetic Code: A New Understanding of Codon - Amino Acid Assignment
نویسندگان
چکیده
In this work it is shown that 20 canonical amino acids (AAs) within genetic code appear to be a whole system with strict AAs positions; more exactly, with AAs ordinal number in three variants; first variant 00-19, second 00-21 and third 00-20. The ordinal number follows from the positions of belonging codons, i.e. their digrams (or “doublets”). The reading itself is a reading in quaternary numbering system if four bases possess the values within a specific logical square: A = 0, C = 1, G = 2, U = 3. By this, all splittings, distinctions and classifications of AAs appear to be in accordance to atom and nucleon number balance as well as to the other physico-chemical properties, such as hydrophobicity and polarity. K e y w o r d s: Genetic code, Genetic code table, Translation, Numbering system, Spiral model of Genetic code, Canonical amino acids, Logical square, Hydrophobicity, Polarity, Hydropathy, Perfect numbers, Friendly numbers.
منابع مشابه
Non-Standard Genetic Codes Define New Concepts for Protein Engineering
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondri...
متن کاملAn asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices.
Aminoacyl-tRNA synthetases (aaRSs) are responsible for creating the pool of correctly charged aminoacyl-tRNAs that are necessary for the translation of genetic information (mRNA) by the ribosome. Each aaRS belongs to either one of only two classes with two different mechanisms of aminoacylation, making use of either the 2'OH (Class I) or the 3'OH (Class II) of the terminal A76 of the tRNA and a...
متن کاملAn asymmetic underlying rule in the assignment of codons: Possible clue to a quick early evolution of the genetic code via successive binary choices
Aminoacyl-tRNA synthetases (aaRSs) are responsible for creating the pool of correctly charged aminoacyl-tRNAs that are necessary for the translation of genetic information (mRNA) by the ribosome. Each aaRS belongs to either one of only two classes with two different mechanisms of aminoacylation, making use of either the 29OH (Class I) or the 39OH (Class II) of the terminal A76 of the tRNA and a...
متن کاملThe Biosynthetic Order of Amino Acid Addition to the Genetic Code
The previously formulated model for the evolution of the genetic code was shown to clarify why base triplets of some precursor amino acids differ by a single base from product amino acid codons, while others show less homology. First, the model indicated that the direction of code evolution changed on expansion from the N-fixers code (stage 2). Growth of the code from 16 codons in the NAN colum...
متن کاملA classification scheme of Amino Acids in the Genetic Code by Group Theory
We derive the amino acid assignment to one codon representation (typical 64-dimensional irreducible representation) of the basic classical Lie superalgebra osp(5|2) from biochemical arguments. We motivate the approach of mathematical symmetries to the classification of the building constituents of the biosphere by analogy of its success in particle physics and chemistry. The model enables to ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006